Guides & Tutorials
Practical guides to help you make the most of AgenticAnts.
Getting Started Guides
Advanced Guides
By Use Case
Customer Support Bots
Monitor conversational AI for customer support:
// Track customer support agent
const trace = await ants.trace.create({
name: 'customer-support',
input: customerQuery,
metadata: {
customerId: customer.id,
ticketId: ticket.id,
channel: 'chat',
priority: ticket.priority
}
})
// Track satisfaction
await trace.complete({
output: response,
metadata: {
satisfactionScore: feedback.score,
resolved: feedback.resolved
}
})Content Generation
Monitor content creation agents:
# Track blog post generation
trace = ants.trace.create(
name='content-generation',
metadata={
'content_type': 'blog_post',
'target_length': 1500,
'seo_keywords': ['AI', 'agents']
}
)
# Track quality metrics
trace.complete(
output=blog_post,
metadata={
'word_count': len(blog_post.split()),
'readability_score': calculate_readability(blog_post),
'seo_score': analyze_seo(blog_post)
}
)Code Assistants
Monitor AI code generation:
// Track code generation
const trace = await ants.trace.create({
name: 'code-assistant',
input: codeRequest,
metadata: {
language: 'python',
complexity: 'medium',
userId: user.id
}
})
// Track code quality
await trace.complete({
output: generatedCode,
metadata: {
linesOfCode: code.split('\n').length,
testCoverage: runTests(code),
lintErrors: lintCode(code)
}
})Data Analysis
Monitor data analysis agents:
# Track data analysis
trace = ants.trace.create(
name='data-analyst',
input=analysis_request,
metadata={
'dataset_size': len(data),
'analysis_type': 'regression'
}
)
# Track analysis results
trace.complete(
output=analysis_results,
metadata={
'confidence': results.confidence,
'r_squared': results.r_squared,
'execution_time': results.time
}
)Integration Guides
LangChain Guide
import { ChatOpenAI } from 'langchain/chat_models/openai'
import { AgenticAntsCallbackHandler } from '@agenticants/langchain'
const handler = new AgenticAntsCallbackHandler(ants)
const llm = new ChatOpenAI({ callbacks: [handler] })
// All calls automatically tracedAutoGen Guide
from agenticants.integrations import autogen
autogen.auto_instrument(ants)
# All AutoGen agents automatically tracedFramework-Specific Guides
- Next.js + AgenticAnts - Monitor Next.js AI features
- FastAPI + AgenticAnts - Python web services
- Streamlit + AgenticAnts - Data apps
- Vercel AI SDK - Edge functions
Common Patterns
Pattern: Request/Response Logging
async function loggedAgent(input: string) {
const trace = await ants.trace.create({
name: 'agent-call',
input: input
})
try {
const output = await agent.process(input)
await trace.complete({ output })
return output
} catch (error) {
await trace.error({ error: error.message })
throw error
}
}Pattern: Multi-Step Workflow
def multi_step_workflow(query):
trace = ants.trace.create(name='workflow')
# Step 1
with trace.span('step1') as span:
result1 = step1(query)
span.set_output(result1)
# Step 2
with trace.span('step2') as span:
result2 = step2(result1)
span.set_output(result2)
trace.complete(output=result2)
return result2Pattern: Retry Logic
async function withRetry(operation: () => Promise<any>) {
const trace = await ants.trace.create({ name: 'retry-operation' })
for (let attempt = 1; attempt <= 3; attempt++) {
try {
const result = await operation()
await trace.complete({
output: result,
metadata: { attempts: attempt }
})
return result
} catch (error) {
if (attempt === 3) {
await trace.error({ error: error.message })
throw error
}
await new Promise(r => setTimeout(r, 1000 * attempt))
}
}
}Video Tutorials
- Getting Started (5 min) - Quick intro to AgenticAnts
- LangChain Integration (10 min) - Step-by-step setup
- Cost Optimization (15 min) - Reduce AI spending
- Production Deployment (20 min) - Enterprise setup
Community Guides
Browse community-contributed guides:
- Using AgenticAnts with CrewAI by @developer123
- Monitoring Retrieval Quality by @ml_engineer
- Custom Dashboards Tutorial by @data_scientist
Example Projects
Full working examples on GitHub:
- Customer Support Bot - LangChain + OpenAI
- Code Review Agent - Multi-agent with tools
- Document Q&A - RAG with LlamaIndex
- Data Analyst - AutoGen with pandas
View all examples → (opens in a new tab)
Next Steps
Start with a guide that matches your use case: