Model Lifecycle Management
Comprehensive management of LLM models from selection to retirement, ensuring optimal performance and cost efficiency throughout their lifecycle.
Overview
Model Lifecycle Management in LLMOps involves managing the entire journey of LLM models from initial selection through production deployment, monitoring, updates, and eventual retirement. This process ensures models remain effective, cost-efficient, and aligned with business objectives.
Lifecycle Stages
1. Model Selection & Evaluation
Choose the right model for your specific use case:
// Evaluate models for your use case
const evaluation = await ants.llmops.evaluateModels({
useCase: 'customer-support',
requirements: {
maxLatency: 2000, // 2 seconds
maxCostPerQuery: 0.01,
languages: ['en', 'es', 'fr'],
capabilities: ['reasoning', 'code-generation']
},
candidates: ['gpt-4', 'claude-3', 'llama-2-70b']
})
console.log('Best model:', evaluation.recommended)
console.log('Performance scores:', evaluation.scores)
console.log('Cost analysis:', evaluation.costAnalysis)2. Model Registration & Versioning
Register models in your model registry:
# Register a new model version
model_registry = ants.llmops.model_registry
model = model_registry.register({
'name': 'customer-support-v2',
'provider': 'openai',
'model_id': 'gpt-4-turbo',
'version': '2.1.0',
'metadata': {
'description': 'Customer support model with improved empathy',
'training_data': '2024-Q3-support-tickets',
'performance_targets': {
'accuracy': 0.95,
'latency_p95': 1500,
'cost_per_query': 0.008
}
}
})
print(f"Model registered: {model.id}")3. Model Testing & Validation
Comprehensive testing before deployment:
// Automated model testing
const testSuite = await ants.llmops.createTestSuite({
modelId: 'customer-support-v2',
tests: [
{
name: 'accuracy-test',
dataset: 'support-tickets-test-set',
metrics: ['accuracy', 'f1-score', 'response-quality']
},
{
name: 'latency-test',
loadProfile: 'production-traffic',
thresholds: { p95: 2000, p99: 3000 }
},
{
name: 'cost-test',
scenarios: ['simple-queries', 'complex-queries'],
maxCostPerQuery: 0.01
}
]
})
const results = await testSuite.run()
console.log('Test results:', results.summary)4. Model Deployment
Deploy models with proper monitoring:
# Deploy model to production
deployment = ants.llmops.deploy({
'model_id': 'customer-support-v2',
'environment': 'production',
'traffic_percentage': 10, # Start with 10% traffic
'monitoring': {
'metrics': ['latency', 'cost', 'accuracy', 'error_rate'],
'alerts': [
{'metric': 'latency_p95', 'threshold': 2000},
{'metric': 'error_rate', 'threshold': 0.05},
{'metric': 'cost_per_query', 'threshold': 0.012}
]
},
'rollback_strategy': 'automatic'
})
print(f"Deployment ID: {deployment.id}")
print(f"Status: {deployment.status}")5. Model Monitoring & Performance Tracking
Continuous monitoring of model performance:
// Monitor model performance
const monitoring = await ants.llmops.getModelMetrics({
modelId: 'customer-support-v2',
timeRange: 'last_7_days',
metrics: [
'latency',
'throughput',
'error_rate',
'cost_per_query',
'user_satisfaction',
'accuracy'
]
})
console.log('Performance Summary:')
console.log(`Average Latency: ${monitoring.latency.avg}ms`)
console.log(`P95 Latency: ${monitoring.latency.p95}ms`)
console.log(`Error Rate: ${monitoring.errorRate}%`)
console.log(`Cost per Query: $${monitoring.costPerQuery}`)
console.log(`User Satisfaction: ${monitoring.userSatisfaction}%`)6. Model Updates & Retraining
Manage model updates and retraining cycles:
# Schedule model retraining
retraining_job = ants.llmops.schedule_retraining({
'model_id': 'customer-support-v2',
'trigger': 'performance_degradation',
'thresholds': {
'accuracy_drop': 0.05,
'latency_increase': 0.2
},
'retraining_config': {
'data_source': 'latest-support-tickets',
'validation_split': 0.2,
'hyperparameters': {
'learning_rate': 0.001,
'batch_size': 32
}
}
})
print(f"Retraining scheduled: {retraining_job.id}")7. Model Retirement
Properly retire outdated models:
// Retire model with data preservation
const retirement = await ants.llmops.retireModel({
modelId: 'customer-support-v1',
reason: 'replaced-by-v2',
dataRetention: {
metrics: '1_year',
logs: '6_months',
artifacts: 'archive'
},
migration: {
targetModel: 'customer-support-v2',
dataMigration: true
}
})
console.log(`Model retired: ${retirement.id}`)
console.log(`Data archived: ${retirement.archiveLocation}`)Model Registry Features
Centralized Model Inventory
// Browse model registry
const registry = await ants.llmops.getModelRegistry({
filters: {
status: 'production',
provider: 'openai',
tags: ['customer-support', 'v2']
}
})
registry.models.forEach(model => {
console.log(`${model.name} (${model.version})`)
console.log(`Status: ${model.status}`)
console.log(`Performance: ${model.performance.score}`)
console.log(`Cost: $${model.costPerQuery}/query`)
})Model Lineage Tracking
# Track model lineage
lineage = ants.llmops.get_model_lineage('customer-support-v2')
print("Model Lineage:")
for version in lineage.versions:
print(f" {version.version}: {version.description}")
print(f" Changes: {version.changes}")
print(f" Performance: {version.performance}")A/B Testing & Experimentation
Model Comparison
// Run A/B test between models
const abTest = await ants.llmops.createABTest({
name: 'customer-support-model-comparison',
variants: [
{
name: 'control',
modelId: 'customer-support-v1',
trafficPercentage: 50
},
{
name: 'treatment',
modelId: 'customer-support-v2',
trafficPercentage: 50
}
],
metrics: ['accuracy', 'latency', 'cost', 'user_satisfaction'],
duration: '2_weeks',
statisticalSignificance: 0.95
})
const results = await abTest.getResults()
console.log('A/B Test Results:', results.summary)Gradual Rollout
# Gradual model rollout
rollout = ants.llmops.gradual_rollout({
'model_id': 'customer-support-v2',
'strategy': 'canary',
'stages': [
{'percentage': 5, 'duration': '1_day'},
{'percentage': 25, 'duration': '3_days'},
{'percentage': 50, 'duration': '1_week'},
{'percentage': 100, 'duration': 'indefinite'}
],
'rollback_triggers': [
{'metric': 'error_rate', 'threshold': 0.05},
{'metric': 'latency_p95', 'threshold': 2000}
]
})
print(f"Rollout started: {rollout.id}")Best Practices
1. Model Selection
- Evaluate multiple models for each use case
- Consider total cost of ownership (not just per-query costs)
- Test with real data before committing to a model
- Plan for model updates and versioning
2. Version Control
- Use semantic versioning for model versions
- Maintain detailed change logs for each version
- Tag models with metadata (use case, performance, etc.)
- Keep previous versions available for rollback
3. Testing Strategy
- Automated testing for every model update
- Performance regression testing to catch degradations
- Cost impact analysis for budget planning
- User acceptance testing for quality assurance
4. Monitoring & Alerting
- Set up comprehensive monitoring from day one
- Define clear SLAs for model performance
- Implement automated alerting for anomalies
- Regular performance reviews and optimization
5. Lifecycle Management
- Plan model retirement from the beginning
- Maintain data retention policies for compliance
- Document all decisions and rationale
- Regular lifecycle reviews and updates
Integration with FinOps, SRE, and Security Posture
FinOps Integration
- Cost tracking per model and version
- Budget allocation and alerts
- ROI analysis for model investments
- Cost optimization recommendations
SRE Integration
- Performance monitoring and SLAs
- Incident response for model failures
- Capacity planning for model scaling
- Reliability metrics and reporting
Security Posture Integration
- Model security scanning and validation
- Access control for model registry
- Audit trails for model changes
- Compliance reporting for model usage