Docs
FinOps
Cost Optimization

Cost Optimization

Reduce AI costs without sacrificing quality through intelligent optimization strategies.

Optimization Strategies

1. Model Selection

Use the right model for each task:

  • GPT-4 for complex reasoning
  • GPT-3.5 for simple tasks
  • Smaller models for classification

2. Response Caching

Eliminate redundant LLM calls:

ants.cache.enable()
// First call: $0.03
// Second identical call: $0.00 (cached)

3. Prompt Optimization

Shorter prompts = lower costs:

  • Remove unnecessary context
  • Use concise instructions
  • Optimize system messages

4. Smart Sampling

Don't trace everything:

# Sample strategically
if should_trace(request):
    trace = ants.trace.create(...)

Next Steps