SRE - AI Reliability Engineering
Ensure your AI systems are reliable, performant, and always available.
What is AI SRE?
Site Reliability Engineering for AI ensures your AI agents and LLM applications:
- Observable - Complete visibility into system behavior
- Performant - Low latency and high throughput
- ️ Reliable - High availability and fault tolerance
- Scalable - Handle increasing load gracefully
- Monitored - Proactive alerting and incident response
Key Capabilities
1. End-to-End Tracing
Follow requests through your entire stack:
// Trace shows complete execution
Trace: customer-support-query (2.5s)
├─ validate-input (10ms)
├─ retrieve-context (200ms)
│ ├─ vector-search (150ms)
│ └─ fetch-history (50ms)
├─ llm-inference (2.0s)
│ ├─ prompt-construct (20ms)
│ ├─ api-call (1.95s)
│ └─ parse-response (30ms)
└─ format-output (290ms)
// View in dashboard
const trace = await ants.traces.get('trace_abc123')
console.log(trace.duration) // 2500ms
console.log(trace.spans.length) // 8 spans2. Performance Monitoring
Track key performance indicators:
# Get performance metrics
metrics = ants.sre.get_metrics(
agent='customer-support',
period='last_24h'
)
print(f"Latency p50: {metrics.latency.p50}ms")
print(f"Latency p95: {metrics.latency.p95}ms")
print(f"Latency p99: {metrics.latency.p99}ms")
print(f"Throughput: {metrics.throughput} req/s")
print(f"Error rate: {metrics.error_rate}%")
print(f"Success rate: {metrics.success_rate}%")3. Automated Alerting
Get notified before users complain:
// Create SLO-based alert
await ants.sre.createAlert({
name: 'High Error Rate',
condition: 'error_rate > 5%',
window: '5m',
severity: 'critical',
channels: ['slack', 'pagerduty']
})
await ants.sre.createAlert({
name: 'Slow Response',
condition: 'p95_latency > 3000ms',
window: '10m',
severity: 'warning',
channels: ['email', 'slack']
})4. Incident Management
Quickly diagnose and resolve issues:
# Get active incidents
incidents = ants.sre.get_incidents(status='open')
for incident in incidents:
print(f"Incident: {incident.title}")
print(f" Severity: {incident.severity}")
print(f" Started: {incident.start_time}")
print(f" Affected: {incident.affected_users} users")
# Get root cause analysis
root_cause = ants.sre.analyze_incident(incident.id)
print(f" Root cause: {root_cause.description}")Service Level Objectives (SLOs)
Define SLOs
// Set SLOs for your service
await ants.sre.createSLO({
name: 'Customer Support Availability',
sli: 'availability',
target: 99.9, // 99.9% uptime
window: '30d'
})
await ants.sre.createSLO({
name: 'Response Time',
sli: 'latency',
target: 2000, // p95 < 2000ms
percentile: 95,
window: '7d'
})
await ants.sre.createSLO({
name: 'Error Budget',
sli: 'error_rate',
target: 1.0, // < 1% errors
window: '30d'
})Monitor SLO Compliance
# Check SLO status
slo_status = ants.sre.get_slo_status('customer-support-availability')
print(f"SLO: {slo_status.name}")
print(f"Target: {slo_status.target}%")
print(f"Current: {slo_status.current}%")
print(f"Error budget remaining: {slo_status.error_budget}%")
print(f"Status: {slo_status.status}") # healthy, at-risk, breachedPerformance Optimization
Identify Bottlenecks
// Find slow operations
const bottlenecks = await ants.sre.findBottlenecks({
agent: 'customer-support',
threshold: 1000, // > 1 second
period: 'last_7_days'
})
bottlenecks.forEach(bn => {
console.log(`${bn.operation}: ${bn.p95}ms`)
console.log(` Occurrences: ${bn.count}`)
console.log(` Total time wasted: ${bn.total_time / 1000}s`)
})Performance Trends
# Track performance over time
trends = ants.sre.get_performance_trends(
agent='customer-support',
metrics=['latency_p95', 'throughput', 'error_rate'],
period='last_30_days',
granularity='daily'
)
# Plot trends
import matplotlib.pyplot as plt
plt.plot(trends.dates, trends.latency_p95)
plt.title('P95 Latency Trend')
plt.show()Error Tracking
Error Analysis
// Get error breakdown
const errors = await ants.sre.getErrors({
agent: 'customer-support',
period: 'last_24h',
groupBy: 'error_type'
})
errors.forEach(error => {
console.log(`${error.type}: ${error.count} occurrences`)
console.log(` First seen: ${error.first_seen}`)
console.log(` Last seen: ${error.last_seen}`)
console.log(` Affected users: ${error.affected_users}`)
})Error Rate Monitoring
# Monitor error rates
error_metrics = ants.sre.get_error_metrics(
agent='customer-support',
period='last_7_days'
)
print(f"Total errors: {error_metrics.total}")
print(f"Error rate: {error_metrics.rate}%")
print(f"MTBF: {error_metrics.mtbf} hours") # Mean time between failures
print(f"MTTR: {error_metrics.mttr} minutes") # Mean time to recoveryAvailability Monitoring
Uptime Tracking
// Get uptime statistics
const uptime = await ants.sre.getUptime({
agent: 'customer-support',
period: 'last_30_days'
})
console.log(`Uptime: ${uptime.percentage}%`)
console.log(`Downtime: ${uptime.downtime_minutes} minutes`)
console.log(`Incidents: ${uptime.incident_count}`)
console.log(`MTTR: ${uptime.mttr} minutes`)Health Checks
# Configure health checks
ants.sre.configure_health_check({
'endpoint': '/api/health',
'interval': 60, # seconds
'timeout': 5,
'retries': 3,
'expected_status': 200
})
# Get current health status
health = ants.sre.get_health_status('customer-support')
print(f"Status: {health.status}") # healthy, degraded, down
print(f"Last check: {health.last_check}")
print(f"Response time: {health.response_time}ms")Load Testing
Simulate Traffic
// Run load test
const loadTest = await ants.sre.createLoadTest({
agent: 'customer-support',
duration: '5m',
rps: 100, // 100 requests per second
rampUp: '30s',
regions: ['us-east-1', 'eu-west-1']
})
// Get results
const results = await loadTest.getResults()
console.log(`P95 latency: ${results.latency.p95}ms`)
console.log(`Error rate: ${results.error_rate}%`)
console.log(`Throughput: ${results.throughput} req/s`)Dashboards
Real-Time Monitoring
┌─ Agent Performance Dashboard ──────────┐
│ │
│ Throughput: 45 req/s (↑ 5%) │
│ Latency P95: 1,850ms (↓ 12%) │
│ Error Rate: 0.3% (↓ 0.2%) │
│ Availability: 99.95% (target: 99.9%) │
│ │
│ Active Requests: 12 │
│ Queue Depth: 3 │
│ CPU Usage: 45% │
│ Memory: 2.1GB / 4GB │
│ │
│ Recent Errors: │
│ • Timeout (2) - 5 min ago │
│ • Rate limit (1) - 15 min ago │
│ │
└─────────────────────────────────────────┘Custom Dashboards
# Create custom dashboard
dashboard = ants.sre.create_dashboard({
'name': 'Customer Support Overview',
'widgets': [
{'type': 'timeseries', 'metric': 'throughput'},
{'type': 'gauge', 'metric': 'latency_p95'},
{'type': 'counter', 'metric': 'error_count'},
{'type': 'heatmap', 'metric': 'latency_distribution'}
],
'refresh_interval': 30 # seconds
})Incident Response
Automated Runbooks
// Define runbook
await ants.sre.createRunbook({
name: 'High Error Rate Response',
trigger: 'error_rate > 5%',
steps: [
{ action: 'notify', channels: ['pagerduty'] },
{ action: 'scale', instances: 2 },
{ action: 'enable', feature: 'circuit_breaker' },
{ action: 'notify', channels: ['slack'], message: 'Mitigation applied' }
]
})Post-Mortem Analysis
# Generate post-mortem
post_mortem = ants.sre.create_post_mortem(
incident_id='inc_123',
include_timeline=True,
include_metrics=True,
include_logs=True
)
# Export
post_mortem.export('incident_123_post_mortem.pdf')Best Practices
1. Set Clear SLOs
// Define measurable objectives
await ants.sre.createSLO({
name: 'API Availability',
target: 99.9, // Specific target
window: '30d' // Time window
})2. Monitor Proactively
# Don't wait for users to report issues
ants.sre.create_alert({
'condition': 'latency_p95 > 2000',
'action': 'investigate_before_users_complain'
})3. Automate Response
// Automated remediation
await ants.sre.createAutomation({
trigger: 'high_error_rate',
action: 'restart_service',
conditions: { duration: '5m', threshold: 10 }
})4. Learn from Incidents
# Always do post-mortems
for incident in closed_incidents:
post_mortem = ants.sre.create_post_mortem(incident.id)
post_mortem.share_with_team()Integration with Tools
PagerDuty
await ants.sre.integrateWith('pagerduty', {
apiKey: process.env.PAGERDUTY_API_KEY,
serviceId: 'PXXXXXX',
escalationPolicy: 'PXXXXXX'
})Grafana
# Export metrics to Grafana
ants.sre.configure_export({
'provider': 'prometheus',
'endpoint': 'http://prometheus:9090',
'interval': 15 # seconds
})Next Steps
- Distributed Tracing - Deep dive into tracing
- Metrics & Monitoring - Comprehensive metrics guide
- Alerting - Set up effective alerts